PEMODELAN DAN FORECASTING KEBUTUHAN AIR BERSIH DI PROPINSI DIY MENGGUNAKAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)
Sari
Kata Kunci
Teks Lengkap:
PDFReferensi
Grigonytė, E. (2016). Short-term wind speed forecasting using ARIMA model, (1), 45–55.
Jana, P. (2016). Aplikasi Triple Exponential Smoothing untuk Forecasting Jumlah Penduduk Miskin. Derivat, 3(2), 76–81. Retrieved from http://upy.ac.id/ojs/index.php/mtk/issue/view/81/showToc
Kavousi-Fard, A., & Kavousi-Fard, F. (2013). A new hybrid correction method for short-term load forecasting based on ARIMA, SVR and CSA. Journal of Experimental and Theoretical Artificial Intelligence, 25(4), 559–574. https://doi.org/10.1080/0952813X.2013.782351
Kumar, U., & Jain, V. K. (2010). ARIMA forecasting of ambient air pollutants (O3, NO, NO2 and CO). Stochastic Environmental Research and Risk Assessment, 24(5), 751–760. https://doi.org/10.1007/s00477-009-0361-8
LIU, L., LUAN, R. S., YIN, F., ZHU, X. P., & LÜ, Q. (2016). Predicting the incidence of hand, foot and mouth disease in Sichuan province, China using the ARIMA model. Epidemiology and Infection, 144(1), 144–151. https://doi.org/10.1017/S0950268815001144
Luo, L., Luo, L., Zhang, X., & He, X. (2017). Hospital daily outpatient visits forecasting using a combinatorial model based on ARIMA and SES models. BMC Health Services Research, 17(1), 1–13. https://doi.org/10.1186/s12913-017-2407-9
Omar, H., Hoang, V. H., & Liu, D. R. (2016). A Hybrid Neural Network Model for Sales Forecasting Based on ARIMA and Search Popularity of Article Titles. Computational Intelligence and Neuroscience, 2016. https://doi.org/10.1155/2016/9656453
Rosadi, D. (2012). Ekonometrika & Analisis Runtun Waktu Terapan (I). Yogyakarta: Andi Offset.
Wang, S. J., Huang, C. T., Wang, W. L., & Chen, Y. H. (2010). Incorporating ARIMA forecasting and service-level based replenishment in RFID-enabled supply chain. International Journal of Production Research, 48(9), 2655–2677. https://doi.org/10.1080/00207540903564983
Wang, W. chuan, Chau, K. wing, Xu, D. mei, & Chen, X. Y. (2015). Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition. Water Resources Management, 29(8), 2655–2675. https://doi.org/10.1007/s11269-015-0962-6
Article Metrics
Sari view : 46 timesPDF - 51 times